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ABSTRACT: With a rotary rheometer, various methods
were used to determine the characteristic relaxation times
for a commercial polydimethylsiloxane (PDMS), and their
consistency and relation to the linear relaxation spectrum
were examined. The experimental damping functions of
the step deformation of the PDMS, a polymethylvinylsi-
loxane, and a high-density polyethylene were compared
with predictions of the Doi–Edwards theory and Mar-
rucci model; the effect of wall slip on the damping func-
tion data is discussed, and the appearance of stress peaks
due to material instability as the strain increased above a
critical value is detailed. Through the application of a

previously proposed stress decomposition method to the
data of large-amplitude oscillatory shear for the PDMS
sample, the relationship between the generalized elastic
modulus [G0

N(x,c)] and the shear relaxation modulus
[G(c,t)] was investigated. In the linear and initial nonlin-
ear regimes, as the angular frequency (x) increased,
G0

N(x,c) approached G(c,t) on the timescale t ¼ 1/x,
where t is the time. VVC 2008 Wiley Periodicals, Inc. J Appl
Polym Sci 110: 1520–1530, 2008

Key words: melt; polyethylene (PE); relaxation; rheology;
viscoelastic properties

INTRODUCTION

Relaxation time plays a central role in polymer rhe-
ology. For polymers of narrow molecular weight dis-
tribution, the boundary between the plateau and
terminal zones of the linear relaxation modulus
[G(t)] is rather sharp,1 and the existence of a single
terminal relaxation time is clear. For low-molecular-
weight polymers, this corresponds to the Rouse
time: sR ¼ 6g0M

p2qRT, where M is the average molecular
mass, g0 is the zero-shear viscosity, q is the density,
R is the gas constant, and T is the absolute tempera-
ture.2 For high-molecular-weight polymers (M >
35,000 Da), the terminal relaxation time corresponds
to the chain disengagement time (sd; or reptation
time), which is estimated to be sd ¼ 12g0

p2G0
N

, where G0
N

is the plateau modulus.3,4 For most commercial poly-
mers, a wide distribution of molecular weight broad-
ens the crossover from the terminal zone to the
plateau zone, and a continuous or discrete spectrum
is necessary to precisely describe their complex
relaxation behaviors. However, to simplify modeling

and numerical simulation, there are various experi-
mental methods available to determine a characteris-
tic time that can represent the major physical
process of interest. A convenient method is to use
the crossover frequency (xc) of the dynamic moduli
[G0(x) and G00(x)] in the small-amplitude oscillatory
shear (SAOS) and the critical shear rate _cc for the
onset of shear thinning in steady shear flow.5 For
monodisperse systems, shear thinning occurs at _cc
% 1/sd.

3 The two characteristic times are related by
sd ¼ a/xc ¼ asc, where sc is the crossover time, a is
an inherent constant of the polymer sample; for an
isotropic polypropylene with a polydispersity index
of 4.1, Elmoumni et al.5 reported a � 8. Another
way to determine a characteristic relaxation time is
to use the creep-recovery test or SAOS. In the uncor-
related drag model of Graessley,2,6 the weight-aver-
age relaxation time (sw) for a narrow distribution of
relaxation times in the terminal zone is given by sw
¼ g0J

0
e , where J0e is the steady-state shear compliance,

which can be measured by creep recovery or SAOS
at low frequencies.2,6 In the framework of the tube
reptation model, the longest relaxation time for the
reptation process is given by

sd ¼ ð10=p2Þg0J
0
e (1)

which is identical to sw for monodisperse polymers.
In this study, we used a variety of the aforemen-

tioned methods to determine the characteristic times
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of a commercial polydisperse polydimethylsiloxane
(PDMS) and to examine their relation to the linear
relaxation spectrum.

The damping function [h(c)] of the relaxation
modulus is a crucial test for the evaluation of consti-
tutive equations of polymer melts. The published
data on h(c) were well reviewed by Osaki7 and are
classified into three types: the normal exponential
type, the power law, and the kinked type. Generally,
for monodisperse polymers, the theory of Doi and
Edwards3 and the model proposed by Marrucci et
al.8 give good predictions of h(c) and the normal
stress ratio. Iza and Bousmina9 studied the h(c)’s of
several polymers with polydispersity indices from
1.09 to 2.45; within a strain range of 0.01–5, better
prediction with the Marrucci model than with the
Doi–Edwards theory was observed. However, as the
strain magnitude increased, experiments of step de-
formation often confront a serious problem; that is, a
wall slip may set in and make the true strain (c)
considerably lower than the apparent one,10 or strati-
fied deformations (shear banding) may take place in
the bulk of sample;11 in some cases, these two phe-
nomena are hard to distinguish from each other.
Archer et al.12 observed apparent slip within a few
micrometers on a glass surface with tracers sus-
pended in a highly entangled polystyrene solution.
A nonlinear velocity profile was observed by Tapadia
and Wang13,14 for an entangled polybutadiene solu-
tion in the gap of a cone-and-plate fixture when it
was sheared in the stress plateau region with parti-
cle-tracking velocimetry; also, a shear banding phe-
nomenon was observed under oscillatory shearing
with large amplitudes when the imposed frequency
was higher than the aforementioned xc.

In this article, we report the results of step strain
experiments for three polymer samples: a PDMS, a
polymethylvinylsiloxane (PMVS), and a high-density
polyethylene (HDPE) with the polydispersity indices
ranging from 1.5 to 6.1. We compared the obtained
h(c)’s with the theoretical predictions, examined the
effect of the uncertain c on h(c), and detailed the
appearance of stress peaks as the strain increased,
which was predicted by material instability
theory.3,11,15

In the linear viscoelastic regime, both G(t) and
G0(x) are a measure of elastic energy, and it is well
established that as G(t) approaches the plateau
region, its value is equal to G0(x) on the timescale
t ¼ 1/x, where t is the time and x is the angular
frequency.2 This relation is useful for obtaining G(t)
at very short time intervals because, for polymers
such as PDMS, it difficult to directly measure G(t)
near the plateau region because of instrumental limi-
tation of temperature control and the rising time in
step deformation. The desired data can be replaced
by G0(x)x¼1/t with an acceptable error.16 Beyond the

linear viscoelastic regime, however, the G0(x) and
G00(x) reported by the rheometer lose their usual
physical meaning. Large-amplitude oscillatory shear
(LAOS) is an important tool for analyzing the non-
linear behavior of complex fluids.14,17,18 Recently,
Cho et al.19 proposed a method to decompose the
nonlinear stress response in LAOS into elastic and
viscous components on the basis of the geometric as-
pect of viscoelasticity. In the last part of this article,
by applying the method of Cho et al. to the LAOS
experiment for PDMS, we compare the generalized
elastic modulus with the shear relaxation modulus
[G(c,t)] at large strains and find a similar relation to
that in the linear viscoelastic regime.

EXPERIMENTAL

Materials

Three polymer samples were used in this study:
PDMS 101 and PMVS 110-2, both manufactured by
Jilin Jihui Industry and Commerce Co., Ltd. (Jilin,
China) and HDPE 5306J, manufactured by Yangzi
Petroleum Co., Ltd. (Shanghai, China). Table I lists
the molecular weights measured with gel permea-
tion chromatography. HDPE sample disks 20 mm in
diameter were prepared by molding with a labora-
tory press at 1508C and under 10 MPa for 10 min;
they were then cooled in the atmosphere.

Rheometry

The experiments were done on a Gemini 200 rotary
rheometer manufactured by Bohlin Instruments Co.
Almost all of the rheological experiments were done
with parallel plates 15 mm in diameter with a gap
of 0.5 mm. Parallel plates with a diameter of 25 mm
and a gap of 1.21 mm were used in the line-marker
experiment to clearly show the wall slip effect.
Before the experiments, the plates were cleaned care-
fully with acetone to eliminate possible contaminants
and residual polymer chains.

Temperature control

The main experimental temperatures were 40, 40,
and 1508C for the PDMS, PMVS, and HDPE sam-
ples, respectively. Before rheological measurement,
there was about 5 to 10 min when the sample disk

TABLE I
Molecular Parameters of the Polymers

Polymer Mn Mw Mw/Mn

PDMS 101 4.9 � 105 7.3 � 105 1.5
PMVS110-2 3.7 � 105 5.7 � 105 1.6
HDPE 5306J 1.5 � 104 9.4 � 104 6.1

Mn, number-average molecular weight.
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was first melted in the rheometer at the required
temperature to remove the thermal and strain his-
tory. During the experiments, the temperature fluc-
tuation did not exceed �0.28C.

RESULTS AND DISCUSSION

Relaxation times of PDMS

Determination of the relaxation time by shear
thinning

In steady shear flow, shear thinning occurs at _c %
1/sd, where _c. is the shear rate and sd is the disen-
tanglement time in tube theory.3 The corresponding
characteristic relaxation time (sg1) of PDMS in steady
shear flow can be estimated by sg1 ¼ 1/ _cg1, where
_cg1 is the shear rate at which the zero-shear plateau
and shear thinning slope cross, or by sg2 ¼ 1/_cg2,
where _cg2 is the shear rate at which the shear thin-
ning behavior occurs at the very beginning.20 Similar
definitions were used for the small-amplitude oscil-
lation test by replacement of the shear rate with x
and the steady viscosity with the dynamic one, as
shown in Figure 1. The obtained relaxation times are
listed in Table II, in which sg2 seemed to give the
more consistent results of the two methods.

Determination of the relaxation time by the
creep-recovery test

The weight-average relaxation time s(w) (or the lon-
gest sd) was determined by the creep-recovery test
and with eq. (1). The experimental curves for the

PDMS sample are shown in Figure 2. Table III lists
the results from three runs; the repeatability was
good. The average relaxation time was 8.0 s, which
agreed well with that determined by the shear thin-
ning tests. Additionally, with the cone and plate
with a diameter of 25 mm and a cone angle of 5.48,
sd ¼ 7.0 s was obtained.

Linear relaxation spectrum

SAOS experiments were done for the PDMS sample
at four temperatures: 20, 40, 60, and 808C. The con-
trolled shear stress (s) was 100 Pa (in the linear
region). Up and down frequency sweeps gave
almost identical curves. The G0

N obtained was 2.3
� 105Pa, compared with a value of 2.4 � 105 Pa from
the literature;11 the complex zero-shear viscosity
(g0*) was 2.3 � 104 Pa s at 408C, which agreed with
g0 measured by the creeping test. A master curve
(shifted to 408C) was obtained by time–temperature

Figure 1 Shear viscosity versus the (a) shear rate in steady shear and (b) angular frequency in dynamic shear for PDMS
at 408C, from which sg1 was determined by the crossover of the zero-shear plateau and shear-thinning slope, sg2 was
determined by the onset of shear thinning behavior.

TABLE II
Relaxation Times of PDMS at 408C Estimated from the

Steady and Linear Dynamic Viscosities

Test mode sg1 (s) sg2 (s)

Steady shear 0.84 8.6
Dynamic shear 0.70 8.2

Figure 2 Creep-recovery test for PDMS at 408C with the
shear stress (r0) ¼ g0 is the zero-shear viscosity. 500 Pa
imposed for 500 s and a recovery time of 500 s.
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superposition, as shown in Figure 3, with the Arrhe-
nius type shift factor (aT):

aT ¼ K1e
E=RT (2)

where K1 is a material constant and is 1.79 � 10�3; E
is the activation energy and is 16.5 kJ/mol, which is
very close to the 16.7 kJ/mol reported in the litera-
ture;21 and R ¼ 8.3145 J/K�mol. Notice that the
crossover time 1/xc is 0.3 s at 408C. Thus, with sd ¼
8.0 s derived from the creep-recovery test, sd ¼ 27/
xc ¼ 27sc for this PDMS sample.

In our step-strain experiments, the time lapse
required to reach the target strain was limited by 20
ms in the linear region and by 45 ms for large
strains. Because the rheometer we used was not able
to run below room temperature, it was difficult to
obtain the data of G(t) near the plateau region of the
PDMS sample. The material response in step defor-
mation was elastic in nature, so G(t) and G0(x) were
mirror images at short timescales,2,16 that is,

lim
t!0

GðtÞ ¼ lim
x!1G0ðxÞ (3)

This limiting relation was valid, as illustrated in
Figure 4, where the two responses became close to
each other (within 5% error) at times shorter than
45 ms.

The relaxation behavior of PDMS could be more
precisely described by a discrete spectrum of N
relaxation times (si’s) and the corresponding spectral
strength (gi):

2,22

GðtÞ ¼
XN

i¼1

gie
�t=si (4)

We obtained the parameters gi and si by fitting the
measured G(t) and the extrapolated G(t) ¼ G0(x)x¼1/t

when t < 20 ms by using the nonlinear curve-fit-
ting tool of the software Origin7.0 (Origin Lab Co.,
Northampton, MA). The results are listed in Table
IV. Given the relaxation spectrum, the dynamic mod-
uli could be calculated as follows:16,23

G0ðxÞ ¼
XN

i¼1

gis2i x
2

1þ s2i x
2

(5)

G00ðxÞ ¼
XN

i¼1

gisix

1þ s2i x
2

(6)

Figure 5 compares the calculated moduli with the
experimental data extracted from the master curves
of Figure 3(a). The predictions were good, especially
at low frequencies.

Step shear deformation of large strains

Damping function

In linear viscoelastic regime, the shear relaxation
moduli are independent of the strains. In the nonlin-
ear regime, the conventional log–log relaxation
curves are nearly parallel after a certain initial time,
which means that the shear relaxation modulus
could be separated into time- and strain-dependent
factors:7,23

TABLE III
Creep-recovery Test Data for PDMS at 408C

Run

1 2 3 Average

J0e (1/Pa) 3.4 � 10�4 3.0 � 10�4 3.3 � 10�4 3.2 � 10�4

g0 (Pa s) 2.44 � 104 2.45 � 104 2.43 � 104 2.44 � 104

sd (s) 8.4 7.5 8.1 8.0

Figure 3 Master curves of (a) the loss and storage moduli and (b) the complex viscosity of PDMS at 408C.
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Gðc; tÞ ¼ GðtÞhðcÞ ðt > srÞ (7)

where G(t), h(c), and sr are the linear relaxation
modulus, the damping function, and a material time
constant that indicates the possible characteristic
time of chain retraction, respectively.

The relaxation moduli of the PDMS, PMVS, and
HDPE samples are shown in Figure 6. PDMS and
PMVS seems to belong to the power law type, which
could be attributed to the polydispersity of the sam-
ples. Similar to the data of Iza and Bousmina,9 the
modulus curves of HDPE showed slight kinks
located at a time roughly independent of the strains.
The corresponding damping functions [h(ca)’s] are
shown in Figure 7. In a simplified chain entangle-
ment network model, with the node force balance
requirement taken into account, Marrucci et al.8 pro-
posed a new strain tensor (S):

S ¼ C�1=2=trðC�1=2Þ (8)

where tr is the trace operator and C�1/2 is the
square root of the Finger tensor C�1 and is deduced
by the following h(c):

hðcÞ ¼ 6

4þ c2 þ ð4þ c2Þ1=2
; (9)

The well-known Doi–Edwards3 theory with the in-
dependent alignment approximation24 gives h(c) as

hðcÞ ¼ 1

1þ 4c2=15
(10)

As shown in Figure 7, when the strain was small,
the experimental h(ca)’s agreed well with the predic-
tions from both Doi–Edwards theory and the Mar-
rucci model; the latter had a slight improvement
over the former. The same conclusion was reported
by Iza and Bousmina.9 As the strain increased, how-
ever, the rate of strain softening predicted by the
theories were considerably larger than the experi-
mental data.
By using a straight-line-marker technique, Kaylon

and Gevgilili10,25 demonstrated that in the step strain
or steady shear experiments of PDMS and HDPE,
the wall slip may become a serious problem, even
with a moderate level of strain. In our experiment,
wall slip of the PMVS and PDMS samples was also
observed for strains larger than 3, as shown in
Figure 8. For the PMVS sample, we got c ¼ 2.2 for an
apparent strain (ca) of 3.0 and c ¼ 3.75 for ca ¼ 5.0;
for the PDMS sample, we got c ¼ 1.9 for ca ¼ 3.0.
Thus, the wall slip could not be ignored. Another
problem we confronted was flow instability or edge
fracture; that is, the sample was expelled out of the
plates for large strains. Reducing the gap is an
effective way to enlarge the range of strain without
edge fracture. In Figure 8, a relatively large gap of
1.21 mm was adopted to reveal the wall slip
clearly, whereas in the experiments depicted by
Figure 6, we used a small gap of 0.5 mm to reach
large strains without edge fracture. It was difficult

Figure 4 Linear stress-relaxation data of PDMS at 408C
and the fitting curve plotted with nonlinear regression.

TABLE IV
Relaxation Spectrum Obtained by the Fitting of G(t) of

PDMS at 408C

i gi ki

1 3.41 � 104 1.18 � 10�2

2 3.82 � 104 4.01 � 10�2

3 2.15 � 104 1.81 � 10�1

4 1.01 � 104 6.88 � 10�1

5 2.85 � 103 2.70 � 100

6 2.88 � 102 1.17 � 101

7 3.24 � 101 1.02 � 102

Figure 5 Storage and loss moduli of PDMS at 408C and
the predictions from the relaxation spectrum of Table IV.
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to determine the c’s with such a small gap by
the marker technique. Fortunately, as shown in Fig-
ure 7, the slopes of h(ca) for the three polymers at
large strains are nearly �1, and this slope would
be affected little by possible strain rectification. In
fact, for a given correct stress and G(t), h(ca) is
inversely proportional to the strain, so any strain

correction on the log h(c)–log c plot has a slope of
�1. Thus, the variation trends of the experimental
h(ca)’s at large strains shown in Figure 7 are reli-
able, even though we are uncertain about the c’s.
Iza and Bousmina9 reported good predictions of

h(c) of the Marricci model eq. (9) for polystyrene
and HDPE samples with polydispersity indicese

Figure 6 Stress-relaxation functions of large step strains for (a) PDMS at 408C, (b) PMVS at 408C, and (c) HDPE at 1508C
(the strain rise time was 20–45 ms).

Figure 7 Comparison of the experimental damping function h(ca)’s with predictions of the Marrucci model and Doi–
Edwards theory: (a) PDMS at 408C, (b) PMVS at 408C, and (c) HDPE at 1508C.
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from 1.09 to 2.45. Their maximum step strain was
about 5, which was relatively low due to the fixture
chosen (25-mm cone and plate) and the transducer’s
limit. We used 15-mm parallel plates and a 0.5-mm
gap; this fixture not only enlarged the strain range
but also shortened the response time of the trans-
ducer (20–45 ms) and revealed larger discrepancies
of h(c) at larger strains between the theoretical pre-
dictions and the experiments for the three polymers
with medium to large polydispersities.

Figure 9 plots the superimposed moduli via the
vertical shifting of the curves in Figure 7. Generally,
the time–strain separability was valid beyond a cer-
tain initial time sr. The determination of sr was arbi-
trary to some extent. If we took a criterion of 10%
relative discrepancy of the curves, the sr values were
0.1, 0.06, and 0.04 s for PDMS, PMVS, and HDPE,

respectively; the magnitudes were in the same order
as the molecular weights. Among the three poly-
mers, the initial time sr of PDMS seemed better dem-
onstrated. If we took the initial time sr as a rough
estimation of the Rouse time (sR), as suggested by
Larson,11 sd could be estimated by

sd=sR ¼ MW=Me (11)

where Me and Mw are the entanglement molecular
weight and weight-average molecular weight,
respectively. For the PDMS sample, Mw ¼ 7.3 � 105,
sr � 0.1 s, and Me � 1 � 104, the average value from
Doi and Edwards3 and Forsman;26 thus sd � 7.3 s.
According to the tube model, the strain softening is
attributed to the retraction process: after a step de-
formation, polymer chains retract along their tube
contours to their original lengths. This is accom-
plished in a relatively short time sr; the slower relax-
ation mechanism is the reptation of the chains to
recover their isotropic orientation, which took a
much longer time (sd). The relaxation times of the
PDMS sample so far determined by various methods
are summarized in Table V.

Material instability

For imposing instantaneous shear deformation, Doi–
Edwards theory predicts material instability at large
strains. Marrucci and Grizzuti15 analyzed the step
strain instability problem by deriving an expression

Figure 8 Wall slip as shown by a straight line marker for
PMVS at 408C in 25-mm parallel plates with a gap of 1.21
mm; ca was 3.0, and the strain rise time was 126 ms.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 9 Superimposed relaxation modulus via vertical shifting for (a) PDMS at 408C, (b) PMVS at 408C, and (c) HDPE
at 1508C. sr indicates the possible time of chain retraction.
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of deformation free energy on the basis of the repta-
tion model with independent alignment approxima-
tion. The curve of free energy versus shear strain
has an inflection point at a strain of cm � 2.1, which
corresponds to a maximum of stress in the stress–
strain relations. Deformation beyond the inflection
point is unstable, and not only that, deformation
before the inflection point is possibly metastable:
perturbations may have caused the sample to split
into two layers of smaller and larger strains, respec-
tively, which satisfied the assigned strain but with
smaller total free energy. Later, Marrucci et al.8 pro-
posed a simplified form of the free energy derived
from the orientation tensor of eq. (8), and the maxi-
mum of stress for an instantaneous shear deforma-
tion took place at cm � 2.3.

As shown in Figure 8, a kink was observed on the
marker line, which implied that the bulk deforma-

tion may have been nonuniform in addition to the
wall slip. In Figure 10, we present s versus the appa-
rent step strain at various instances when the target
strains were just reached. The shear stresses (s’s) of
PDMS, PMVS, and HDPE exhibited peaks at strains
of 1.0, 2.5, and 3.0, respectively. Moreover, the sec-
ond peaks of the s’s appeared at strains of 15, 20,
and 20, respectively. However, one must bear in
mind that the large strains after the stress peak cor-
responded to unstable states, and wall slip or strati-
fication may have already occurred in the samples.

Elastic stresses (s0’s) of the step deformation and
oscillatory shear at large strains

When the strain amplitude of an oscillatory shear
flow is small, the storage and loss moduli represent
the elastic and viscous natures of the sample, respec-
tively. For LAOS, the stress curve as a function of
time cannot be described by a single trigonometric
function; thus, the dynamic moduli reported by the
rheometer no longer adequately represent the elastic
and viscous contributions. Recently, on the basis of
the stress symmetry of LAOS, Cho et al.19 proposed
a new method to decompose the stress response into
elastic and viscous parts. The decomposition method
is described as follows.
If c(t), _c(t), and x are the shear strain, shear rate,

and angular frequency, respectively, let

TABLE V
Summary of the Relaxation Times of PDMS at 408C

Obtained by Various Methods

Method Relaxation time (s)

Steady shear thinning 8.6
Dynamic shear thinning 8.2
Creep recovery 8.0
Step deformation, chain reptation 7.3
Step deformation, chain contraction 0.1
Dynamic xc 0.3

Figure 10 Stresses at different moments versus the apparent step strain for (a) PDMS at 408C, (b) PMVS at 408C, and (c)
HDPE at 1508C. The strain rise times were 20–45 ms. The insets show the stress–strain curves in the whole range of
strains.
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x ¼ c and y ¼ _c=x (12)

The shear stress (s) is an odd function for both strain
and shear rate, that is

s �x;�yð Þ ¼ �s x; yð Þ (13)

Thus, s can be decomposed as

s x; yð Þ ¼ s x; yð Þ � s �x; yð Þ
2

þ s x; yð Þ � s x;�yð Þ
2

(14)

The first term on the right-hand side of eq. (14) is
odd for x and even for y, and the second term is
even for x and odd for y. Considering the work con-
sumption characteristics in cyclic deformation, Cho
et al. defined the elastic stress (s0) and viscous stress
(s00) as

s0 ¼ s x; yð Þ � s �x; yð Þ
2

; s00 ¼ s x; yð Þ � s x;�yð Þ
2

(15)

Figure 11 shows an example of the stress decom-
position for the PDMS sample at 408C for three
strain amplitudes at x ¼ 0.2 rad/s; the linear regime
was c0 < 0.8, as determined by a strain sweep. At
the small strain c0 ¼ 0.5, the elastic waveforms was
basically sinusoidal; at the moderate strain c0 ¼ 3.02,
s0 deviated a little from the sinusoidal function; and
at the large strain c0 ¼ 7.54, the s0 waveform was
distorted heavily with an additional peak–valley. On
the other hand, the s00 waveforms always seemed
close to sinusoidal functions. This behavior was first

observed by Cho et al.19 for polypropylene at x ¼ 1
rad/s and 1708C. At large strains, the total shear
stress amplitude (smax) dropped gradually as the os-
cillatory shearing proceeded. Hatzikiriakos and
Dealy27 attributed the attenuation of stress ampli-
tude in LAOS to the wall slip, which did not occur
instantly but evolved with slip relaxation time. Here,
to avoid the complexity of the wall slip relaxation,
we concentrated on the first few cycles and applied
Cho et al.’s decomposition method to the stress
waves as soon as they were symmetric.
In the stress relaxation experiment, the time inter-

val for the application of target strain was very short
(20–45 ms), so the response could be taken as the
initial buildup of s0 and its later relaxation. In the
linear viscoelastic regime, G(t) and G0(x) are related
by eq. (4), which held for this PDMS sample, as
shown in Figure 4. It is interesting to check this rela-
tion in the nonlinear regime. For the purpose, the
generalized dynamic moduli defined by Cho et al.19

were used:

G0
Nðx; c0Þ ¼ s0max=c0; G

00
Nðx; c0Þ ¼ s00max=c0 (16)

where c0 is the strain amplitude and G0
N(x,c0) is the

generalized storage modulus and smax
0 and smax

00 are
the decomposed maximum s0 and s00 in a cycle,
respectively. In Figure 12, we compare G(c,t) and
G0

N(x,c0) for the PDMS sample on the timescale t ¼
1/x. Both the moduli exhibited softening at large
strains. As x increased from 0.2 to 5.0 rad/s, the dif-
ference between G(c,t) and G0

N(x,c0) became smaller

Figure 11 Total elastic and viscous shear stresses of PDMS at 408C with a frequency of 0.2 rad/s and strain amplitudes
of 0.5, 3.02, and 7.54, respectively.
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and smaller, whereas smax remained considerably
larger than s0max. At the lower frequencies of 0.2 and
0.5 rad/s (the linear regime was c0 < 0.7), the two
moduli diverged as the strain entered into the non-
linear regime of G(c,t), but at the higher frequencies
of 3 and 5 rad/s (the linear regime was c0 < 0.22),
G0

N(x,c0) approached G(c,t), even in the nonlinear re-
gime. The edge fracture problem prevented our
LAOS experiment from further increasing x.

CONCLUSIONS

The characteristic relaxation times of a PDMS sam-
ple with medium polydispersity were measured by
various rheological tests. Compared with the linear
relaxation spectrum, the obtained characteristic times
at 408C formed two groups: one corresponded to the
chain reptation relaxation (�8 s), and the other cor-
responded to the chain retraction relaxation (�0.1 s,
roughly sR). The crossover frequency (xc) of G0 and
G00 seemed to belong to the latter.

In the step shear deformation experiment, the
relaxation behavior of the medium polydisperse
PDMS and PMVS samples belonged to the power
law type, whereas that of the highly polydisperse
HDPE sample belonged to the kinked type. In terms
of damping function (h(c)), the Doi–Edwards theory
and Marrucci model overestimated the strain soften-
ing for the three commercial polymers. The occur-
rence of stress peaks in the step deformation
experiment as the strain increased above a critical

value was detailed, which implied possible strain
localization or stratification in the samples. The criti-
cal strains were about 1.0, 2.5, and 3.0, respectively,
close to the predictions of 2.1 and 2.3 by Doi–
Edwards theory or the Marrucci model, respectively.
The elastic and viscous stress (s0 and s00) decompo-

sition method proposed by Cho et al.19 was applied
to the data of LAOS of the PDMS sample. As x
increased, G0

N(x,c0) approached the relaxation modu-
lus at the timescale t ¼ 1/x in both the linear and
initial nonlinear regimes.
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